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ABSTRACT 

When an activity can be performed with different techniques, the 

activity cost function may be a discontinuous piecewise linear or 

piecewise convex function of the activity's duration.  This makes the 

determination of the minimum cost schedule satisfying a specified project 

deadline a nonconvex problem.  However, if an activity may be performed 

using a combination of the different techniques, the concept of a convex 

hull can be used to transform the activity's cost function.  The resulting 

convex problem can be solved by the existing PERT procedures.  Therefore, 

this paper extends the applicability of existing PERT procedures to 

problems with discontinuous piecewise linear or piecewise convex activity 

cost functions. 



PROJECT SCHEDULING WITH DISCONTINUOUS PIECEWISE 

CONVEX ACTIVITY COST FUNCTIONS 

1.  Introduction 

The project scheduling procedure known as deterministic PERT solves 

the following problem.  Let d. be the deterministic duration for the j-th 

activity in a project network, and let g.(d,) be the cost of completing 

activity j in d. units of time. Let Dp = E d. be the sum of the comple- 
3 ^  jeP :1 

tion times on a path P linking the source with the sink.  Then the minimum 

cost scheduling problem can be formulated as 

minimize £ 8^(d.) , 
j 

subject  to        max DT< D 
P      P- 

CD 

where D is the specified completion time for the project.  It is well- 

known that problem (1) can be formulated as a convex programming problem 

provided the g. (d.) are convex functions.  In case the g.(d.) are linear 

or continuous piecewise linear the minimum cost project schedule can be 

efficiently determined using the algorithm described by Dunn and Sielken 

[1] which is based upon the earlier work of Fulkerson [2] and Lamberson 

and Hocking [3]. 

There are many activities where a convex cost function represents 

an oversimplification.  In particular, we shall initially consider a 

discontinuous inonincreasing piecewise linear cost function.  Such cost 

functions arise for instance if it is possible to complete an activity 

by a number of (say three) completely different techniques (Figure 1). 
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Tech. 1 

Tech. 2 

Tech. 3 

U1 = L2 U2=L3 U       duration 

Figure 1 

The Activity's Cost as a Function of its Duration 
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It is clear that the cost function plotted in Figure 1 is not a convex 

function and would lead to either nonconvex or integer programming, if 

we insist that the optimization should select one particular technique 

for the completion of the activity. However, there are many problems 

where it is much more reasonable to assume that a combination of techniques 

can be used to complete the activities.  If a combination of techniques is 

used, it is quite possible that for the attainment of a particular duration 

t with say 

L2 1 t £ L3 

a combination of the three techniques may result in a cost that is lower 

than the ordinates given by the technique 2 cost line.  This idea will be 

the basis of our approach. 

For any particular activity, its duration, t, can be represented as 

n 
t =  Z p.t. 

1-1 1 1 

where there are i = 1, ..., n techniques (T , ..., T ) with t. representing 

the rate at which T. is performed and p. the fraction of the activity per- 

formed using T..  The optimal mixture of techniques to perform an activity 

in a given duration t can be found by solving the following problem: 

n 
minimize     E  p.(a.  + B.t.)    , (2) .   ,   1    111 

1=1 

n 
subject  to     Z  p.   =  1        , (3) 

i=l 1 

n 
Z p.t.  = t       , (4) 

i=l 
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Li 1 ti 1 U. ,    i - 1, .... n,       (5) 

0 £ pi £ 1  ,    i = 1, ..., n,       (6) 

where the cost function for T. has been written as a. + 3.t.. 

In Section 2 this nonlinear programming problem is transformed 

into an equivalent linear programming problem.  Then, in Section 3, 

we shall show that in the linear programming problem the optimal objec- 

tive function value (which equals the optimal activity cost) is a convex 

function of t.  Hence any of the solution procedures that can be used to 

solve (1) when the activity costs, g.(t), are convex functions can also 

be used to solve (1) when the originally specified form of g.(t) is a 

discontinuous nonincreasing piecewise linear function.  The establishment 

of this result is the primary purpose of this paper.  An auxiliary result 

noted in Section 3 is that the optimal mixture of techniques to perform 

the activity need not involve more than two techniques.  Finally, in Section 

4 the results for piecewise linear cost functions are extended to piecewise 

convex functions. 

2.  Linearizing the Nonlinear Problem 

Theorem 1.  The problem, PI, stated in (2) - (6), is equivalent to the 

problem, P2, given in (7) - (10): 

minimize  E q.(a. + 6,L.) + q ,,(a +0 U ) , (7) , ni  i   11   ^n+1 n   n n 

n+1 
subject to  E q = 1 , (8) 

1-1 

<l±L0  > (9) 
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.l^lh +  VlUn = t   ' dO) 

Proof:  If (p^^, ,.., pn; t^   ..., t ) is a feasible solution of PI, it 

can be shown that (q1, ..., c^^; 1^, ..., Ln, Un) is a solution of P2 

when 

ql " Plrl ' 

ll = Piri + (1 " rl-l>Pi-l '     ±= 2'   •••» « 

Vl = Pn(1 " rn) ' 

where 

and 

L...-t. 
ri  L.^-L. '   i - 1. ..., n 

i+l i 

n+1   n 

If C1 and C2 are the objective function values for these feasible solutions 

to PI and P2 respectively, then using a little algebra 

n 
C1 - C2 = ^p.d - r.)^ + t±L.+1  - (ai+1 + 3.+1Li+1)] . 

But the singularities of the activity's cost function are such that the 

jumps are positive when moving to shorter durations; i.e. 

ai + eiLi+l > ai+l + ei+lLi+l '      for i = 2, ..., n        (11) 

Therefore, since pi ^ 0 and 1 - ^ _> 0 for all i, (11) implies 

Cl ~ C2 - 0 ' 
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Thus, for any feasible solution of PI, there is a feasible solution of 

P2 with no greater cost.  On the other hand, if (q1 , ..., ^ +-| 5 

L_, ..., L , U ) is a feasible solution to P2, then 
1       n  n 

9± 
m <l±  > i = 1, .. ., n - 1 

t.=L., i=l,...,n-l 

Pn = 1 " ql - ' ' ' " Vl ' 

_ qnLn+qn+lLn+l 
tn "   qn+qn+l 

is a feasible solution to PI with the same objective function value. 

Hence PI and P2 are equivalent. 

The importance of this result is that it is sufficient to study the 

problem P2 which is restricted to the convex hull, S, of the extremities 

of the segments on the activity's cost function graph. 

3.  Optimization on the Convex Hull 

For a given activity duration, t, the lowest cost is attained by a point 

on the lower boundary of S as is evident in Figure 2.  Since the lower 

boundary of a convex set is a convex function, the minimum activity cost 

is a convex function of t.  Thus, if in the project scheduling problem in 

(1), g.(t) is given as a discontinuous piecewise linear nonincreasing 

function, it can be replaced by the convex function corresponding to the 

lower boundary of S(see for example Figure 3),  This allows for (1) being 

solved by the existing deterministic project scheduling algorithms. 
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Cost 

duration 

Figure 2 

The Convex Hull of the Cost Function Graph 

Extremities L,, .... L , U 1       n  n 



-8- 

Cost Cost 

v" 

H h 

\ 
\ 
\ 
\ 
\ 

L    U   duration    Ln n    n 1 

\ 
\ 
\ 

"+ h 
U     duration n 

Figure 3 

Lower Boundary of the Convex Hull 
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4.  Generalization to a Discontinuous Nonincreasing 

Plecewlse Convex Cost Function 

For a given technique, it is more general to assume that the cost 

function is convex, see for example Figure 4. 

The convex cost function of the piece corresponding to the technique 

T. can be approximated by the continuous plecewlse linear function that 

joins the points (t, , cost (t,)) for k = 0, ..., m where 

t. = L. + -(L.^, - L.) . k   i  mv i+l   i7 

If we do this approximation for each technique T., we have as the whole 

range of time a discontinuous, nonincreasing, plecewlse linear function. 

Then we are able to apply the theory of Sections 2 and 3.  Since the 

convex hull of the graph of the approximate function tends for a •♦• « to 

the convex hull of the graph of the initial plecewlse convex cost function, 

the optimal strategy is to use the point on the lower boundary of the con- 

vex hull of the plecewlse convex graph. 

A point on this lower boundary is in one of two forms illustrated 

by M, and M„ in Figure 5.  The point M. is on the common tangent between 

two pieces of the cost function.  The corresponding optimal mixture of 

techniques is to use the technique corresponding to A at the rate t. to 

do 100pA% of the activity and the technique corresponding to B at the 

rate t to do the remaining 100(0 - PA)% of the activity where 

M1 = pAA + (1 ~ PA)B . 

The savings realized by allowing a mixture of techniques is, in this case. 
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Cost 

duration 

Figure 4 

A Piecewise Convex Cost Function 



-11- 

Cost 

M. 
duration 

Figure 5 

Combination of Techniques for a Piecewise Convex Cost Function 



-12- 

6.  On the other hand, the point M is actually on the cost function for 

technique T„, so the optimal strategy is simply to perform this activity 

using lust T„ at the rate tw . 
2 M. 

Once again, since the minimum cost for doing an activity corresponds 

to the lower boundary of a convex hull, the minimum activity cost is a 

convex cost function of t.  Hence a specified discontinuous activity cost 

function g.(t) in (1) can be replaced by a convex function. 

5.  Conclusion 

When an activity can be performed with different techniques, the 

activity cost function has a discontinuous piecewise nature.  This makes 

project scheduling a nonconvex problem.  However, if an activity may be 

performed using a combination of the different techniques, the concept 

of convex hull can be used to transform the activity's cost function. 

The resulting convex problem can be solved by the existing PERT procedures. 

Therefore, this paper extends the applicability of existing PERT procedures 

to problems with discontinuous piecewise linear or piecewise convex 

activity cost functions. 
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